

FACILITATIVE SHARING OF VIEWS

MALAYSIA 9 DECEMBER 2019

GHG INVENTORY

EMISSION AND REMOVALS OF GREENHOUSE GAS FOR EACH SECTOR IN 2014

SECTOR	EMISSIONS/ REMOVALS FOR 2014 (Gg CO ₂ eq)	PERCENT EMISSIONS (%)
Energy	253,517.23	79.8
Industrial Processes	20,257.83	6.4
Agriculture	10,850.77	3.4
LULUCF (Emissions)	3,317.15	1.0
Waste	28,217.35	8.9
Other	1,466.48	0.5
Total emissions	317,626.83	100
Total sink	-267,147.77	
Net total (after subtracting sink)	50,479.06	

GHG INVENTORY

TOP 8 KEY CATEGORIES – WITHOUT LULUCF (2014)

SECTOR	KEY SOURCE	GAS	CURRENT YEAR ESTIMATE (Gg CO ₂ eq)	LEVEL ASSESSMENT (%)
Energy	Energy industries: Gaseous Fuels	CO ₂	66,719.84	21.2%
Energy	Transport: road transportation	CO ₂	55,366.46	17.6%
Energy	Energy Industries: Solid Fuels	CO ₂	54,876.21	17.5%
Energy	Fugitive emissions from fuels: Natural Gas	CH₄	22,395.51	7.1%
Waste	Solid waste disposal sites	CH ₄	31,127	5.0%
Energy	Energy Industries: Liquid Fuels	CO ₂	11,501.10	3.6%
Energy	Manufacturing Industries and Construction: Gaseous Fuels	CO ₂	11,428.40	3.6%
Waste	Solid Waste Disposal	CH ₄	10,305.40	3.3%

PERCENTAGE OF EMMISIONS ACCORDING TO GREENHOUSE GAS IN 2014

GHG INVENTORY

EMISSION TIME SERIES FROM 1990 TO 2014

MITIGATION RELATED POLICIES AND PLANS

NATIONAL CLIMATE CHANGE POLICY

MITIGATION RELATED POLICIES AND PLANS

SECTOR	POLICIES & PLAN	INTERVENTION	
ENERGY	 National RE Policy & Action Plan 	Increase RE in Fuel Mix	
	 National Transport Master Plan National Automotive Policy National Biofuel Policy 	Energy Efficiency in Transport Shift to Public Transport in Urban Areas	
TRANSPORT	 National Biofuel Policy 	Biodiesel blending programme	
	 National Forestry Policy National Biodiversity Policy REDD Strategy 	Sustainable Forest Management	
AFULU	 National Commodity Policy National Agrofood Policy 	Good agriculture practices	
WASTE	 National Strategic Plan for Solid Waste Management MPOB Mandatory Regulation 	Recycling Methane Capture in POME	

MITIGATION ACTIONS AND THEIR EFFECTS				
SECTOR	ENERGY	LULUCF	WASTE	TOTAL
EMISSION REDUCTION ACHIE 2014 (Gg CO ₂ eq)	VED IN 7,365	18,710	3,247	29,328
POTENTIAL EMISSION REDUC 2020(Gg CO ₂ eq)	TION IN 10,656	Not estimated	5,076	Not estimated
International Mechanism		CLEAN DEVE MECHA (2006 - 2	ELOPMENT NISM 2016)	
Total CERs issued (tonnes CO ₂ eq.)		11,458	,586	

MITIGATION ACTIONS AND THEIR EFFECTS			
	GHG emissions Indices	Without LULUCF	With LULUCF (Emissions only)
Differences	CO ₂ eq Emissions per capita (tonne/capita)	+8.07%	-4.7%
(%)	CO ₂ eq Emissions per GDP (kg/RM)	-16.99%	-26.79 %

DOMESTIC MRV ARRANGEMENTS

- MRV through TWG and external experts
- Members of MRV TWG consists of multi-agency experts
- GHG Inventory MRV follows more robust procedure
- Mitigation actions MRV requires further enhancement

CONSTRAINTS AND GAPS

GHG INVENTORY

- Limited availability of activity data according to IPCC Guidelines requirements
- Limited country-specific emission factors

e lou

CAPACITY BUIDING

 Limited funding and technical capacity for enhancement of research and systematic observation

ADAPTATION

- Limited funding and capacity to undertake vulnerability impact assessments
- The need to develop a National Adaptation Plan

MITIGATION

 Limited funds, regulatory framework and cohesive institutional arrangements for implementing mitigation actions

TECHNOLOGY • Require Technology Needs Assessment (TNA)

SUPPORT RECEIVED AND NEEDED

Support Received		REPORTING CAPACITY- BUILDING	TECHNICAL	CAPACITY BUILDING	TECHNICAL, CAPACITY BUILDING
	TOTAL	USD1,204,000	JSD10,452,790 and £40,000	USD480,000 and £3,250	£251,336
Ne	sha				
	CUJ	FINANCE	TECHNOLOGY	CAPACITY	BUILDING
MITIG	ATION	 Energy, IPPU, waste, and Agriculture Ongoing: USD 2,232 million Future: USD 2,268.95 million REDD Plus USD 400 	RE, EE, Industrial process, transportation, waste water	 Expertise in MF Legal and finar Operational an GHG emissions modelling 	RV for each sector ncial expertise d maintenance s projection
ADAP	TATION	million USD104 million (initial enhancement of adaptation measures)		 Best agriculture practices Sector-specific vulnerability and impact assessments Statistical methods and modelling 	
(INVE	GHG ENTORY	Inventory improvement for key categories USD 6.05 million		 2006 IPCC Guid Country Specifie 	delines c emission factor

BUR AND ICA PROCESS – LESSONS LEARNED

INSTITUTIONAL ARRANGEMENT

- Taken significant steps to establish institutional arrangement that allow for sustainable preparation on BUR
- Making organizational improvement and developing knowledge-sharing procedures to facilitate sectoral information transfer

MRV

- Operationalized a system for continuous data collection and timely reporting
- Tracking progress of mitigation actions
- Improving methodologies for quantifying mitigation effects

CAPACITY BUILDING

 Agencies overseeing key emission sector continue to enhance respective technical capacity and technological know-how as required by UNFCCC reporting

AWARENESS

- Increased willingness to share data
- Increased awareness of transparency

AREAS OF IMPROVEMENT SINCE TECHNICAL ANALYSIS

OVERALL

 Improved understanding of the UNFCCC decisions on BUR in particular reporting requirements

GHG INVENTORIES

- Stakeholders further improving their data collection and reporting
- Addressing TTE's capacity building needs for Malaysia reporting
- Increased transparency, completeness and accuracy of Inventory

MITIGATION

- More mitigation programmes planned
- Greater commitment by implementing agencies on quantification.

QUESTIONS FROM GERMANY

Question on the reasons for the	Question on raw data used to
decline of plastic in the solid	get a per capita generation of
waste composition and in terms	solid waste for the estimation of
of GHG emissions	emissions in the waste sector
 Malaysia has reduced its composition of plastic in the solid waste composition in 2012 through recycling activities. However, in terms of GHG emissions of the waste sector, the trend of emissions is increasing. 	 2006 IPCC Guidelines (1970-2000) Expert judgement, splicing technique (2001-2011) National survey (2012 onwards) (waste per capita for rural and urban areas; which includes solid waste from household, industrial, commercial and institution that are disposed in the landfills).

QUESTION FROM SINGAPORE

Question on the on the extrapolation tools and models used, including any activity-specific considerations and assumptions applied in historical data for some activities under the IPPU

- Splicing techniques (non-key categories such as the electronic industry
- Expert judgement
- International review (GIZ)

QUESTION FROM TURKEY

Question on the on the extent of official statistics used in estimating emissions from agricultural activities in Malaysia's National GHG Inventory?

• In estimating emissions from all the activity data of the agriculture sector, official data and statistics were sourced.

QUESTION FROM THE UNITED STATES

Question on lessons learned from the development and use of these data collection/forest inventory systems utilizing a combination of geospatial data, ground surveys and national statistics to monitor land-use changes in the country.

 The use of geospatial and ground surveys has been undertaken since 1982.

Challenges

- harmonising data from geospatial images and official gazettes (earliest forest gazette dates back to 1905) and converting the units of area in the gazette with current images.
- the presents of cloud cover also affected the analysis of the images.

QUESTION FROM NEW ZEALAND

Question on the reasons for the trend of Malaysia's GHG emissions from its agriculture sector which grew at an average rate of 2.2% per year from 1990 to 2014, including the areas of the agriculture sector which are responsible for this trend?

- Based on the time series (1990 2014) for agriculture sector, direct N₂O emissions from agricultural soils contribute the most to the increasing trend of the emissions.
- This is mainly due to an increase in use of fertilizer.

THANK YOU